Motion Lab: Learning Experience Design

Motion Lab: Learning Experience Design

Motion Lab: Learning Experience Design

01
RESPONSIBILITIES
UX RESEARCH
UX RESEARCH
UX DESIGN
UX DESIGN
UI DESIGN
UX DESIGN
UX DESIGN
DELIVERABLES

Unity Application

OVERVIEW

Making hands-on, biology lab experiment more affordable and accessible

Making hands-on, biology lab experiment more affordable and accessible

Making hands-on, biology lab experiment more affordable and accessible

THE GOAL

Building a prove of concept for scalable system

Starting with Micropipette: essential, expensive, and challenging to learn digitally.

Measuring success through:

  • Accessibility

  • Affordability

  • Gesture transferability.

Measuring success through:

  • Accessibility

  • Affordability

  • Gesture transferability.

Measuring success through:

  • Accessibility

  • Affordability

  • Gesture transferability.

BACKGROUND

In need of a virtual solution to reach more students

In need of a virtual solution to reach more students

In need of a virtual solution to reach more students

For hi-fi user testing, we wanted to make an effort to recruit students who had LDs in order to assess the target audiences' needs. To do this, we created a functional needs survey that asked users whether they identified with common needs that are present in students with LDs, such as ADHD and dyslexia.

We were able to test 5 college students, 2 of which self-reported as having light ADHD/executive dysfunction, and 3 students who scored above average on the survey. None of our users had previous experience with micropipetting.

For hi-fi user testing, we wanted to make an effort to recruit students who had LDs in order to assess the target audiences' needs. To do this, we created a functional needs survey that asked users whether they identified with common needs that are present in students with LDs, such as ADHD and dyslexia.

We were able to test 5 college students, 2 of which self-reported as having light ADHD/executive dysfunction, and 3 students who scored above average on the survey. None of our users had previous experience with micropipetting.

For hi-fi user testing, we wanted to make an effort to recruit students who had LDs in order to assess the target audiences' needs. To do this, we created a functional needs survey that asked users whether they identified with common needs that are present in students with LDs, such as ADHD and dyslexia.

We were able to test 5 college students, 2 of which self-reported as having light ADHD/executive dysfunction, and 3 students who scored above average on the survey. None of our users had previous experience with micropipetting.

Feature 1

Better understand what students need through research

Better understand what students need through research

Better understand what students need through research

Traditional lab-based experiments can feel overwhelming due to fragmented instructions, constant attention-switching, and inaccessible teaching methods.

Traditional lab-based experiments can feel overwhelming due to fragmented instructions, constant attention-switching, and inaccessible teaching methods.

Traditional lab-based experiments can feel overwhelming due to fragmented instructions, constant attention-switching, and inaccessible teaching methods.

Based on these research insights, we proposed the following features to make the virtual lab experience more accessible:

  1. Multimodal instructions: Offer multimodal instruction combining video, text, and narration to accommodate varying learning preferences.

  2. Streamlined Interactions: Minimize task-switching by integrating instructions and immediate feedback directly into the workflow to guide user focus.

  3. Open and Observable Environment: Create a shared, open environment where peers can observe each other’s progress, enabling body doubling while maintaining an immersive and realistic practice experience.


Based on these research insights, we proposed the following features to make the virtual lab experience more accessible:

  1. Multimodal instructions: Offer multimodal instruction combining video, text, and narration to accommodate varying learning preferences.

  2. Streamlined Interactions: Minimize task-switching by integrating instructions and immediate feedback directly into the workflow to guide user focus.

  3. Open and Observable Environment: Create a shared, open environment where peers can observe each other’s progress, enabling body doubling while maintaining an immersive and realistic practice experience.


Based on these research insights, we proposed the following features to make the virtual lab experience more accessible:

  1. Multimodal instructions: Offer multimodal instruction combining video, text, and narration to accommodate varying learning preferences.

  2. Streamlined Interactions: Minimize task-switching by integrating instructions and immediate feedback directly into the workflow to guide user focus.

  3. Open and Observable Environment: Create a shared, open environment where peers can observe each other’s progress, enabling body doubling while maintaining an immersive and realistic practice experience.


Features 3

Better understand what students need through research

Better understand what students need through research

Better understand what students need through research

Based on these research insights, we proposed the following features to make the virtual lab experience more accessible:

  1. Multimodal instructions: Offer multimodal instruction combining video, text, and narration to accommodate varying learning preferences.

  2. Streamlined Interactions: Minimize task-switching by integrating instructions and immediate feedback directly into the workflow to guide user focus.

  3. Open and Observable Environment: Create a shared, open environment where peers can observe each other’s progress, enabling body doubling while maintaining an immersive and realistic practice experience.


Based on these research insights, we proposed the following features to make the virtual lab experience more accessible:

  1. Multimodal instructions: Offer multimodal instruction combining video, text, and narration to accommodate varying learning preferences.

  2. Streamlined Interactions: Minimize task-switching by integrating instructions and immediate feedback directly into the workflow to guide user focus.

  3. Open and Observable Environment: Create a shared, open environment where peers can observe each other’s progress, enabling body doubling while maintaining an immersive and realistic practice experience.


Based on these research insights, we proposed the following features to make the virtual lab experience more accessible:

  1. Multimodal instructions: Offer multimodal instruction combining video, text, and narration to accommodate varying learning preferences.

  2. Streamlined Interactions: Minimize task-switching by integrating instructions and immediate feedback directly into the workflow to guide user focus.

  3. Open and Observable Environment: Create a shared, open environment where peers can observe each other’s progress, enabling body doubling while maintaining an immersive and realistic practice experience.


Features 3

Better understand what students need through research

Better understand what students need through research

Better understand what students need through research

Simultaneously, the Learning Disabilities Association of Pennsylvania (LDA of PA) recognizes the unique challenges students with LDs face in traditional laboratory settings. They see this initiative as an opportunity to enhance educational access for these students through highlighting the accessibility of the new virtual learning solution.

Simultaneously, the Learning Disabilities Association of Pennsylvania (LDA of PA) recognizes the unique challenges students with LDs face in traditional laboratory settings. They see this initiative as an opportunity to enhance educational access for these students through highlighting the accessibility of the new virtual learning solution.

Simultaneously, the Learning Disabilities Association of Pennsylvania (LDA of PA) recognizes the unique challenges students with LDs face in traditional laboratory settings. They see this initiative as an opportunity to enhance educational access for these students through highlighting the accessibility of the new virtual learning solution.

Based on these research insights, we proposed the following features to make the virtual lab experience more accessible:

  1. Multimodal instructions: Offer multimodal instruction combining video, text, and narration to accommodate varying learning preferences.

  2. Streamlined Interactions: Minimize task-switching by integrating instructions and immediate feedback directly into the workflow to guide user focus.

  3. Open and Observable Environment: Create a shared, open environment where peers can observe each other’s progress, enabling body doubling while maintaining an immersive and realistic practice experience.


Based on these research insights, we proposed the following features to make the virtual lab experience more accessible:

  1. Multimodal instructions: Offer multimodal instruction combining video, text, and narration to accommodate varying learning preferences.

  2. Streamlined Interactions: Minimize task-switching by integrating instructions and immediate feedback directly into the workflow to guide user focus.

  3. Open and Observable Environment: Create a shared, open environment where peers can observe each other’s progress, enabling body doubling while maintaining an immersive and realistic practice experience.


Based on these research insights, we proposed the following features to make the virtual lab experience more accessible:

  1. Multimodal instructions: Offer multimodal instruction combining video, text, and narration to accommodate varying learning preferences.

  2. Streamlined Interactions: Minimize task-switching by integrating instructions and immediate feedback directly into the workflow to guide user focus.

  3. Open and Observable Environment: Create a shared, open environment where peers can observe each other’s progress, enabling body doubling while maintaining an immersive and realistic practice experience.


Next steps

Better understand what students need through research

Better understand what students need through research

Better understand what students need through research

Based on these research insights, we proposed the following features to make the virtual lab experience more accessible:

  1. Multimodal instructions: Offer multimodal instruction combining video, text, and narration to accommodate varying learning preferences.

  2. Streamlined Interactions: Minimize task-switching by integrating instructions and immediate feedback directly into the workflow to guide user focus.

  3. Open and Observable Environment: Create a shared, open environment where peers can observe each other’s progress, enabling body doubling while maintaining an immersive and realistic practice experience.


Based on these research insights, we proposed the following features to make the virtual lab experience more accessible:

  1. Multimodal instructions: Offer multimodal instruction combining video, text, and narration to accommodate varying learning preferences.

  2. Streamlined Interactions: Minimize task-switching by integrating instructions and immediate feedback directly into the workflow to guide user focus.

  3. Open and Observable Environment: Create a shared, open environment where peers can observe each other’s progress, enabling body doubling while maintaining an immersive and realistic practice experience.


Based on these research insights, we proposed the following features to make the virtual lab experience more accessible:

  1. Multimodal instructions: Offer multimodal instruction combining video, text, and narration to accommodate varying learning preferences.

  2. Streamlined Interactions: Minimize task-switching by integrating instructions and immediate feedback directly into the workflow to guide user focus.

  3. Open and Observable Environment: Create a shared, open environment where peers can observe each other’s progress, enabling body doubling while maintaining an immersive and realistic practice experience.